
Advt. No. CORP/GRP.A/04/2024
Recruitment to the post of Scientist B (Level 10) against Continuing contract

vacancies on payscale

Important Notice for Candidates

Candidates who had applied for the post of Scientist B positions are hereby informed
that the originally notified 15 domains have now been grouped into 7 broader
domains.

The revised domains are as follows:

Sr.
No.

Notified Domains
Revised domains for the
purpose of examination

1 Hardware VLSI design

Hardware – Embedded /
VLSI /FPGA Design / IoT /
System design

Cyber Physical systems – Embedded
Systems & IOT

Hardware – VLSI Design

Embedded systems & IoT

Hardware – VLSI / FGPA Design

Hardware System Design

2 Dependable & Secure computing (Cyber
Security) Cyber Security

Cyber Security (R&D)

3 System Administrator System Administrator

4
Applied AI & Data Analytics

Applied AI and Data
Analytics

5 Applied Computing (e-Gov) Applied Computing and
Enterprise software
development Enterprise software development

6 HPC Software HPC systems and
Software Development HPC System Software Development

7 Quantum Computing Quantum Computing

• Candidates who have applied under multiple domains will now appear for only

one exam for each combined domain, as per the revised structure, given above.
• The syllabus for each of the 7 domains reflects the merged content and is made

available hereby.
• The examinations are tentatively scheduled in 4th week of July / 1st week of

August 2025.
• Candidates are advised to regularly check their registered email IDs, including

the spam/junk folder, for updates regarding call letters and further
communication.

June 12, 2025 Director (HRD), C-DAC

Syllabus

Hardware – Embedded / VLSI /FPGA Design / IoT / System design

Embedded systems

1. Embedded C Programming and Data structure - Overview of C Programming
language, Introduction to GNU Toolchain and GNU Make utility, Linux environment
and vi editor, Tokens of C - Keywords, Data-Types, Variables, Constants, Operators,
Identifiers, Storage Class Specifiers, Control Flow Statements, Arrays,
Multidimensional arrays, Data Input & Output, Strings, Loops, Functions and
Recursion, Pointers - Introduction, Pointer Arithmetic, Pointers and Arrays, Pointers
and Functions, Pointers and Strings, Structures, Unions, Enum, Typedef, Bit field
operators and pointers with structures, Preprocessors, C and Assembly, Files, I/O,
Variable number of arguments, Command Line arguments, Error handling, Debugging
and Optimization of C programs, Bit operations, Handling portability issues in C,
Hardware, Time, Space and Power aware Programming. Algorithms and Abstract
Data Types, Complexity of Algorithms, Linked Lists, Stacks, Queues, Searching and
Sorting Algorithms, Hashing, Trees.

2. Microcontroller programming and peripheral interface - Overview of
Microcontrollers, Microprocessors and SoC, RISC vs CISC, Harvard vs Princeton Ar-
chitectures, Overview of Computer Architecture, Embedded Memories,
Timers/Counters, UART, SPI, PWM, WDT, Input Capture, Output Compare Modes,
I2C,CAN, LED, Switches, ADC, DAC, LCD, RTC, Bus Standards (USB, PCI), Programming
in Assembly and Embedded C.

3. ARM: Overview of ARM Architecture and Organization, Introduction to Cortex-M
Architecture, Programming Model and Instruction Set Architecture, Alignment and
Endianness, Register access, State, Privilege, Stack, System Control Block, Power
Modes, Memory Model, NVIC, Exception Handling, Bit- Banding, Peripheral
Programming, SVCall, SysTick, PendSv, MPU, DMA, Mixing Assembly and C programs,
Introduction to CMSIS & CMSIS Components, Overview of Cortex A & R architectures.

4. RISC V: Why RISC-V processor, RISC-V processor overview, ARM vs RISC-V, Modes in
RISC-V, Setting up of necessary tools, RISC-V register set and calling convention,
Instruction formats and type, Build Process, Practical examples of instructions, Detail
description on Control and Status Registers, Exception handling, Examples in
assembly for exception handling, Interrupts, Interrupt Entry and Exit procedure.
Introduction to C-DAC VEGA processors.

5. Power Management: Power supply requirements for embedded systems, Low-
power design techniques, Power modes of microcontrollers (sleep, deep sleep),
Energy-efficient software design.

6. Testing and Debugging in Embedded Systems: Testing methodologies: unit testing,
integration testing, system testing, On-chip debugging techniques: JTAG, SWD, Fault-
tolerance and error-handling mechanisms, Testing tools: oscilloscopes, logic
analyzers, debuggers.

IoT

1. Introduction to IoT
Fundamentals of IoT: Introduction, Definitions & Characteristics of IoT, IoT

Architectures, Physical & Logical Design of IoT, Enabling Technologies in IoT, IoT

frameworks, IoT and M2M.

Sensors Networks: Definition, Types of Sensors, Types of Actuators, IoT

Development Boards: Arduino IDE and Board Types, RaspberriPi Development Kit,

RFID principles and components, Wireless Sensor Networks: History and Context,

The node, Connecting nodes, Networking Nodes, WSN and IoT.

2. Networking and Communication Protocols - Overview of Basic Networking Concepts
(TCP/IP, OSI Model), MQTT, CoAP, LoRaWAN and Cellular Technologies in IoT,
Bluetooth Low Energy (BLE) Network Topologies for IoT, Wireless Technologies for
IoT: WPAN Technologies for IoT: IEEE 802.15.4, Zigbee, HART, NFC, Z-Wave, BLE,
BACnet, Modbus. IP Based Protocols for IoT IPv6, 6LowPAN, RPL, REST, AMPQ, CoAP,
MQTT. Edge connectivity and protocols

3. IoT Hardware and Embedded Systems - Overview of Microcontrollers (Arduino,
Raspberry Pi, i.MX8), Types of Sensors and Actuators and Their Applications, Power
Management Techniques, Embedded Programming Languages (C/C++, Python),
Hardware Interfacing Techniques (GPIO, I2C, SPI), Basics of the Python programming
language, Programming on the Raspberry Pi. Python on Raspberry Pi, Python
Programming Environment, Python Expressions, Strings, Functions and Function
arguments, Lists, List Methods, Control Flow.

4. Data Management and Processing - Data Acquisition Techniques from Sensors,
Signal Processing Methods Role of Cloud Computing in IoT (AWS IoT, Azure IoT)
Concepts of Edge Computing Comparison of Data Storage Solutions (SQL vs. NoSQL)
Data Analytics in IoT, IoT Physical Servers and Cloud Offerings: Introduction to Cloud
Storage models and communication APIs. Webserver – Web server for IoT, Cloud for
IoT, Python web application framework, Designing a RESTful web API, Connecting to
APIs. Introduction, Bigdata, Types of data, Characteristics of Big data,Data handling
Technologies, Flow of data, Data acquisition, Data Storage, Introduction toHadoop.
Introduction to data Analytics, Types of Data analytics, Local Analytics, Cloud
analytics and applications.

5. Security and Privacy in IoT - Common IoT Security Challenges and Threats, Best
Practices for Securing IoT devices, Overview of Encryption Methodologies (TLS, End-
to-End Encryption),Privacy Concerns in Data Collection and Compliance Standards
,Security in WSN: Challenges of Security in Wireless Sensor Networks, Security
Attacks in Sensor Networks, Protocols and Mechanisms for Security, IEEE 802.15.4
and ZigBee Security.

6. IoT Applications and Use Cases - Smart Homes, Smart Cities, and Industrial IoT,
Healthcare Applications and Wearable Technologies, Environmental Monitoring and
Precision Farming, Transportation and Fleet Management Solutions, Applications of
IoT: Home Automation, Smart Cities, Energy, Retail Management, Logistics,
Agriculture, Health and Lifestyle, Industrial IoT, Legal challenges, IoT design Ethics,
IoT in Environmental Protection.

7. Development Frameworks and Tools
• Overview of Popular IoT Platforms (AWS IoT, Azure IoT)

• Development Tools and Environments (PlatformIO, Arduino IDE)

• APIs for IoT Integration (REST, GraphQL)

• IoT Simulation Tools (Cooja, IoTIFY)

8. Testing and Quality Assurance
• Testing Strategies for IoT Devices (Unit, Integration, Performance Testing)

Importance of Performance Monitoring

• Reliability Testing Approaches

• Tools for Testing IoT Applications (API Testing Tools)

9. Emerging Technologies in IoT - AI and Machine Learning in IoT, Blockchain
Applications in IoT Security Augmented Reality (AR) and Virtual Reality (VR) Digital
Twin Technology and its Applications Impact of 5G on IoT Development

Hardware – System Design

1. Electronics Design Fundamentals:

o Introduction to Electronics: Signals, frequency Spectrum of Signals, Analog

and Digital Signals, Linear Wave Shaping Circuits: RC LPF, Integrator, RC HPF,

Differentiator. Properties of Semiconductors: Intrinsic, Extrinsic

Semiconductors, Current Flow in Semiconductors, Diodes: p-n junction

theory, Analysis of Diode circuits, Rectifiers,

o Bipolar junction Transistor (BJTs): Physical Structures & Modes of Operation,

Transistor Characteristics, DC analysis, Introduction to Small Signal Analysis,

Transistor as an amplifier, The RC coupled amplifier, Introduction to Power

Amplifiers, Transistor as switch. Field Effect Transistors (FETs): Physical

Structures & Modes of Operation of MOSFETs, MOSFET Characteristics, DC

Analysis. Feedback Amplifiers & Oscillators: General Principles, Different types

of feedback amplifier. Voltage regulators, Voltage converters, Level Shifters.

o Operational Amplifiers (OP-Amps): Ideal OP-AMP, Inverting Amplifier, Non-

Inverting Amplifier. Adder, Subtractor, Integrator, Differentiator.

o Digital Fundamentals: Binary Numbers, Signed-binary numbers, Hexadecimal

Number Systems, Logic Gates. Combinational and sequential logic design,

Digital Logic families.

o Programmable Logic Devices: PLD, PGA, PLA, PAL, FPGA etc.

o Measuring and Test equipment: Introduction to Electronic Instruments, such

as Oscilloscope, Multi-meter, Signal Generators, Logic Analyzer

2. Computer Architecture Fundamentals:

o Introduction to Computer Architecture and Organization. Von Neuman

Architecture, Harvard Architecture, Flynn Classification.

o Computer Organisation: General register organization, stack organization,

Instruction formats, Data transfer and manipulation, program control. RISC,

CISC characteristics. Instruction Set Architecture (ISA). Pipeline and Vector

processing: Pipeline structure, speedup, efficiency, throughput and

bottlenecks. Arithmetic pipeline and Instruction pipeline.

o Memory Organisation: RAM, ROM, Memory Hierarchy, Organization,

Associative memory, Cache memory, and Virtual memory. DDRx memories,

flash memories.

o Input-Output Organization: Input-Output Interface, Modes of Transfer, Priority

Interrupt, DMA, IOP processor.

o Common Bus Architectures such as PCle, LVDS, SPI, I2C, USB etc.

o Functionality and operation of common networking devices such as network

switches, routers.

3. Embedded System Design:

o Overview of Embedded System: Definition, Design Challenges and

Characteristics, Categories and Requirements of Embedded Systems.

Embedded Hardware and Software Development environment. Difference

between microprocessor, microcontroller and DSP. General capability of

microcontroller; microcontrollers in embedded systems. Suitability/selection

of a microcontroller based on - Cost, Performance, Power dissipation and

architecture- 8-bit, 16-bit, 32-bit. Concepts of system-on-chip.

o Interfacing: I/O interfacing of devices such as LED, LCD, different sensors,
ADC, DAC etc.

VLSI

1. Advanced Digital design - Combinatorial Logic Design, Sequential Logic Design: State
machines, Counter Design, Advanced Design Issues: metastability, noise margins,
power, fan-out, design rules, skew, timing considerations, Frequency divide Hazards.
Asynchronous State Machine: Cycle stealing using latch in synchronous circuits,

Interfacing Asynchronous data flow, Asynchronous FIFO design, Asynchronous to
Synchronous Circuit Interaction

2. System Architecture - System Building Blocks: knowledge of Computer Architecture,
Memory Architectures, SPI, I2C, UART, eSPI, USB. FPGA Architecture: Architecture
study of some popular FPGA families (Ultra Scale architecture), Architecture of
Microcontrollers in FPGA (ARM), The backend tools, Integrating non-HDL modules:
Building macros, Knowledge of System on Chip (SOC), Multicore Architecture.

3. Verilog - Module components, Data types, Operators, Modeling concepts ,Gate level
Modeling, Data Flow Modeling, Behavioral modeling, Task and Functions, Compiler
Directives, Specify block and Timing checks, Verification and Writing test benches,
UDP, VCD, PLI, FSMD

4. Simulation and Synthesis - HDL Flow, The concept of Simulation, Types of simulation,
HDL Simulation and Modeling, Simulation Vs Synthesis result, The Synthesis Concept,
Synthesis of high level constructs, Timing Analysis of Logic circuits, Clock Skew, Clock
Jitter, Combinatorial Logic Synthesis, State machine synthesis, Efficient coding styles,
Partitioning for synthesis, Pipelining, Resource sharing, Optimizing arithmetic
expressions, FPGA synthesis and implementation

5. CMOS VLSI - N-MOS, P-MOS and CMOS, Structure of MOS cells, Threshold Voltage,
CMOS Inverter Characteristics, Device sizing, CMOS combinational logic design,
Design of Basic gates, transmission gates and Design of complex logic circuit, Latch
Up effect, Body Effect, Channel Length Modulation, CMOS as a switch, Noise Margin,
Rise and fall times, Power dissipation, Knowledge of CMOS fabrication steps,
Sequential CMOS logic.

6. Fin-FET technology. Application Specific Integrated Circuit (ASIC) Design Flow:

Knowldege of Backend VLSI Design Flow – Libraries, Floor planning, Placement,
Routing, Verification, Testing. Specifications and Schematic cell Design, Spice
simulation, circuit elements, AC and DC analysis, Transfer Characteristics, Transient
responses, Noise analysis of current and voltage, Design Rule, Micron Rules, Lambda
rules of the design and design rule check, Fabrication methods of circuit elements,
Layout design of different cells, Circuit Extraction, Electrical rule check, Layout Vs.
Schematic (LVS), Post-layout Simulation and Parasitic extraction, Different design
Issues like Antenna effect, Electro migration effect, Body effect, Inductive and
capacitive cross talk and Drain punch through, etc., Design format, Timing analysis,
Back annotation and Post layout simulation, DFT Guideline, Test Pattern and Built-in
Self Test (BIST), ASIC design implementation.

7. System Verilog (desirable) - System Verilog Declaration Spaces, Data types, Arrays ,
structure, union, Procedural Blocks and Statements, Task and function, Verification
using SV, Types of verification, Code coverage, task & functions in System Verilog,
OOPs Terminology, Implementation of OOPs Concepts in System Verilog,
Randomization, Assertions property, Assertions Time, Functional Coverage, FSMD
methodologies and working principles, Verilog Regions

8. Verification (UVM) - Transaction, Test bench & its component, UVM class, UVM
reporting, Device Under Test (DUT) and its connection with environment,
Scoreboards, coverage, predictors, monitors, Hierarchy in UVM, Factory Overrides,
Interfaces in UVM, Configuration, sequences Multiple Sequences configuration, UVM
register Model, RM & its use in verification, RM integration, TLM (Transaction Level
Modelling)

9. Linux Shell scripting, Python (Desirable) - Linux Commands, Linux File System, Vi
editor, The Shell, Shell Programming, Basics of TCL scripting, Python - Operator and
Expressions, Numbers, Strings, Lists, tuples, dictionary, standard I/O operations,
functions, regex, OOPS concepts

Hardware - VLSI/FPGA Design

• Digital Design (RTL design): IP design, ASIC/SoC design, FPGA based design from
concept to implementation

• Digital Verification: Guide development of test plans, test benches and automated
test cases

• Knowledge of synthesis, timing closure, and formal verification

• Knowledge of Physical design and verification
Digital Design: Number System, Boolean Algebra and Gates, Combinatorial Logic, Sequential

Logic

Computer Architecture: CPU Architecture (ARM, RISC-V etc.), Memory Architectures, system

bus (PCI- Express), peripheral bus (USB), and LAN (Ethernet) etc.

VLSI Design Flow: RTL to GDS Implementation: Logic Synthesis, Physical Design; Verification

and Testing; Post-GDS Processes

Hardware Modeling: Introduction to Verilog, Functional verification using simulation:

testbench, coverage, mechanism of simulation in Verilog

FPGA Prototyping :

Architecture popular FPGA families, Xilinx high end FPGA family, Architecture of

Microcontrollers in FPGA (ARM), FPGA tools

RTL Synthesis: Verilog Constructs to Hardware Logic Optimization: Definitions, Two-level

logic optimization

Logic Optimization: Multi-level logic optimization, FSM Optimization Formal Verification:

Introduction, Formal Engines: BDD, SAT Solver

Static Timing Analysis: Synchronous Behavior, Timing Requirements, Timing Graph,

Mechanism, Delay Calculation, Graph-based Analysis, Path-based Analysis, Accounting for

Variations

Constraints: Clock, I/O, Timing Exceptions Technology Mapping Timing-driven Optimizations

Design for Test: Basics and Fault Models, Scan Design Methodology, ATPG, BIST

Basic Concepts for Physical Design: IC Fabrication, FEOL, BEOL, Interconnects and Parasitics,

Signal Integrity, Antenna Effect, LEF files

Chip Planning: Partitioning, Floorplanning, Power Planning

Placement: Global Placement, Wirelength Estimates, Legalization, Detailed Placement,

Timing-driven Placement, Scan Cell Reordering, Spare Cell Placement

Clock Tree Synthesis: Terminologies, Clock Distribution Networks, Clock Network

Architectures, Useful Skews Routing: Global and Detailed, Optimizations Physical

Verification: Extraction, LVS, ERC, DRC, ECO and Sign-off

Embedded Systems and IoT

1. C Programming Language
a. The C Programming Model and Development Environment

b. Tool chains, Optimization, Libraries, Debugging Tools,

c. Data Types and Variables

d. Storage Classes in C

e. Statements, Loops

f. Arrays, Structures, Unions, Pointers, Enums

g. Bit Operations, Registers, Directives

h. Data Structures in C – Singly Linked Lists, Doubly Linked Lists, Circular Buffers,

Trees, Graphs

2. Microcontroller Architecture and Programming

a. Microcontroller Architectures – Harvard, Von Neuman, CISC, RISC

b. Memory Architectures – Flash, RAM, NVRAM, Serial Flash, EEPROM

c. Analog circuits – ADC, Comparators, DAC,

d. General Purpose IO

e. Clocks, Timers, Watchdog, Real Time Clock

f. Embedded Peripheral Interfacing - Serial peripherals: UART, SPI, I2C, CAN

g. Interrupts and Nested Interrupts, Interrupt Controllers

3. Operating System Concepts and Linux Programming

a. Process Management, File Management, Device Management, Scheduling,

Memory Management

b. IPC, Synchronization Techniques, Shared Memory

c. Interrupts and Interrupt Vectors, Handlers and Service Routines

d. Device Drivers, Kernel Programming, Device Tree Sources, System Calls

e. Linux System and Application Programming

f. Filesystem Types, Virtual File Systems - Proc FS, SysFS, Dev FS,

g. Libraries – Static and Dynamic Libraries,

h. Bootloader Concepts

i. Real Time Operating System Concepts – Schedulers, Priority based Scheduling

Algorithms, Determinism, Priority Inversion and Inheritance,

4. Embedded Hardware Design Concepts and Power Supplies

a. Discrete Analog Circuit Design – OpAmps circuits: Amplifiers, Comparators,

Integrators, Differentiators, Hysteresis

b. Microcontroller Board Bring Up – Crystal Oscillators, Power Supply

Decoupling, Reset Circuits, Analog and Digital Ground Isolations

c. Power Supply Circuits – Linear Regulators, Low Drop Out oscillators, Switched

Mode Power Supplies – Buck, Boost, Buck Boost, Isolated, Non-Isolated

d. Input and Output Device Interfacing – Analog Sensors, Serial Peripheral

Interfacing, Digital Sensor Interfacing, LCD Interfacing, OLED Interfacing,

Memory Chip Interfacing

5. Internet of Things

a. IoT Communication Topologies – Mesh, Star, Multihop

b. Wireless IoT Protocols

i. LPWAN: LoRa, NBIoT, LTE-CAT M1, SigFox,

ii. Bluetooth and Bluetooth Low Energy

iii. ZigBee

iv. WiFi

v. UWB

vi. 4G and 5G

c. Sensors and Types of Sensors – Acoustic Sensors, Climate Sensors, Navigation

& Location Sensors, Proximity Sensors,

d. Actuators and Output Devices

i. Motors – BLDC, DC, Stepper, Servo

ii. Displays – LCD, OLED,

iii. Buzzers,

e. Battery Chemistries for IoT Use cases

i. Rechargable Chemistry

ii. Non-Rechargable Chemistry

iii. Battery Charging Circuits

f. Basics of Network Security

Cyber Security

1. Cyber Security Fundamentals
• Definition and Importance of Cyber Security

• Key Principles: Confidentiality, Integrity, Availability (CIA Triad)

• Types of Cyber Security: Information Security, Application Security, Network Security,

Cloud Security

• Security Policies and Frameworks: ISO/IEC 27001, NIST Cybersecurity Framework, CIS

Controls

• Risk Management: Identifying Risks and Vulnerabilities, Risk Assessment and

Mitigation Strategies

• Incident Response: Phases of Incident Response (Preparation, Detection, Response,

Recovery), Post-Incident Review and Reporting

2. Network Security

• Network Security Basics: OSI and TCP/IP Models, Types of Networks (LAN, WAN,

VPN), secure communication protocols etc

• Common Network Attacks: Man-in-the-middle, DoS/DDoS, packet sniffing, IP

spoofing etc

• Firewalls: Types (Packet Filtering, Stateful, Application), Configuration and

Management

• Intrusion Detection and Prevention Systems (IDPS IPS), XDR: Signature-Based vs.

Anomaly-Based Detection, Implementation and Tuning

• VPN Technologies: VPN Protocols (IPSec, SSL, L2TP), Secure Remote Access Solutions

• Wireless Security: Wi-Fi Security Protocols (WPA2, WPA3), and vulnerabilities in

wireless communication, Risks and Mitigation Strategies

• Network Monitoring and Logging: Security Information and Event Management

(SIEM), Best Practices for Network Monitoring

3. Application Security
• Secure Software Development Lifecycle (SDLC): Security in Development Phases,

DevSecOps Principles

• Common Vulnerabilities: OWASP Top Ten (e.g., SQL Injection, XSS, CSRF)

• Secure Coding Practices - Secure Coding Principles: Input validation, error handling,

data sanitization., Best Practices: Use of static analysis tools, code review, secure

memory management

• Application Security Testing: Static Application Security Testing (SAST), Dynamic

Application Security Testing (DAST)

• API Security: Authentication and Authorization Protocols (OAuth, JWT), Securing

REST and SOAP APIs

• Mobile Application Security: Threats to Mobile Apps, Secure Coding Guidelines for

iOS and Android, Secure storage, encryption, app sandboxing, mobile-specific

threats, etc

• OS Security: SELinux, AppArmor, Container etc

• Web Application Firewalls (WAF): Purpose and Implementation, Rules and Policies for

WAF

• OWASP Top 10 Vulnerabilities: Cross-site scripting (XSS), SQL injection, CSRF, etc.

4. Firmware Security

• Firmware Basics: Firmware architecture, types of firmware, and secure boot
processes.

• Firmware Vulnerabilities: Buffer overflows, memory corruption, hardware
backdoors, supply chain risks.

• Firmware Integrity Checks: Techniques for secure firmware updates,
encryption

5. Cryptography
• Basic Cryptographic Concepts: Symmetric vs. Asymmetric Encryption,

• Hashing Functions: SHA, MD5, and their security implications.

• Digital Signatures and Certificates: PKI, certificate authorities, and the chain of trust.

• Cryptographic Algorithms: AES, RSA, ECC, DES, Blowfish, symmetric vs. asymmetric

encryption

• Key Management: Key Generation, Distribution, and Storage, Public Key

Infrastructure (PKI), and secure lifecycle management.

• SSL/TLS: How SSL/TLS Works, Implementing HTTPS

• Cryptanalysis: Techniques Used in Cryptanalysis, Common Vulnerabilities in

Cryptography

6. Identity and Access Management (IAM)
• IAM Fundamentals: Concepts of Authentication, Authorization, and Accounting (AAA)

• Access Control Models: Role-Based Access Control (RBAC), Attribute-Based Access

Control (ABAC)

• Single Sign-On (SSO): Benefits and Implementation Strategies, Protocols (SAML,

OAuth, OpenID Connect)

• Multi-Factor Authentication (MFA): Types of MFA, Best Practices for Implementation

• Identity Lifecycle Management: User Provisioning and De-Provisioning, Role

Management and Access Reviews

• Privileged Access Management (PAM): Securing Admin Accounts, Implementing the

Least Privilege Principle

7. Cloud Security
• Cloud Security Basics: Shared Responsibility Model, Cloud Deployment Models (IaaS,

PaaS, SaaS)

• Security Controls in Cloud Environments: Data Encryption and Tokenization, Identity

and Access Management in the Cloud

• Compliance and Governance: Relevant Standards (ISO 27017, CSA STAR), Regulatory

Compliance (GDPR, HIPAA)

• Incident Response in the Cloud: Cloud-Specific Incident Response Plans, Forensic

Investigations in the Cloud

• Security in Cloud Architecture: Secure Application Design in the Cloud, Threat

Modeling for Cloud Services

8. Security Operations and Monitoring
• Security Operations Center (SOC): Roles and Responsibilities of a SOC, SOC Tools and

Technologies

• Monitoring and Incident Detection: Types of Monitoring (Network, Host,

Application), Alerting and Escalation Procedures

• Log Management: Best Practices for Log Collection and Analysis, SIEM Solutions and

Usage

• Threat Hunting: Techniques for Proactive Threat Detection, Tools for Threat Hunting

• Incident Response Procedures: Developing and Testing Incident Response Plans,

Continuous Improvement of Response Strategies

9. Governance, Risk, and Compliance (GRC)
• Introduction to GRC: Importance of Governance in Cyber Security, Risk Management

Principles

• Regulatory Compliance: Key Regulations (GDPR, HIPAA, PCI-DSS), Compliance

Frameworks and Standards

• Risk Assessment: Risk Assessment Methodologies, Risk Treatment Strategies

• Security Policies and Procedures: Developing and Enforcing Security Policies, Policy

Review and Updates

• Auditing and Reporting: Internal and External Audit Processes, Documentation and

Reporting Requirements

10. Security Testing
• Types of Security Testing: Penetration Testing, Vulnerability Assessment, Red Team vs.

Blue Team Exercises

• Tools for Security Testing: Common Tools (Nmap, Metasploit, Burp Suite), Integrating

Security Testing in CI/CD Pipelines

• Testing Methodologies: OWASP Testing Guide, NIST SP 800-115

• Reporting and Remediation: Vulnerability Reporting Best Practices, Prioritizing

Remediation Efforts

11. Cybersecurity Threats and Attack Techniques

• Types of Threats: Malware (Viruses, Trojans, Ransomware, rootkits, adware,

spyware), Social Engineering Attacks (Phishing, Spear Phishing, social engineering,

insider threats)

• Attack Techniques: Advanced Persistent Threats (APTs) - Definition, behavior, and

common examples, Denial of Service (DoS) and Botnets, Distributed Denial of Service

(DDoS) - Concepts, attack methods, and mitigation strategies

• Threat Intelligence: Gathering and Analyzing Threat Intelligence, Using Threat

Intelligence for Defense

• Threat Modelling: STRIDE, DREAD, and risk assessment methodologies.
• Incident Response to Attacks: Incident Response Plans for Different Attack Types,

Forensics and Post-Attack Analysis

• Malware Analysis - Static Analysis: Signature-based detection, file hashes, binary

inspection; Dynamic Analysis: Behavioral analysis, sandboxing, and debugging

malicious code., Reverse Engineering Malware: Tools and techniques for

deconstructing malware.

• Vulnerability Analysis - Common Vulnerabilities: CVEs, zero-day exploits, memory

corruption, race conditions; Exploitation Techniques: Buffer overflows, privilege

escalation, remote code execution.

• Penetration Testing - Penetration Testing Phases: Reconnaissance, scanning,

exploitation, reporting; Reporting and Remediation: Vulnerability disclosure, patch

management, and reporting procedures.

12. Emerging Trends and Technologies in Cyber Security

• Artificial Intelligence and Machine Learning in Cyber Security: Applications of AI in
Threat Detection, Challenges and Limitations of AI, behavior analysis, and anomaly
detection.

• AI-based Security Tools: AI-driven SIEM, intrusion detection, and malware
classification systems.

• Challenges in AI Security: Adversarial attacks, AI model poisoning, and defense
techniques.

• Cybersecurity of AI - Securing AI Models: Protecting against data poisoning, evasion,
and inference attacks., Trust and Explainability in AI: Issues with transparency and
accountability in AI-driven systems, AI Bias and Fairness in Security: Recognizing and
mitigating biases in AI security models.

• Zero Trust Security Model: Principles of Zero Trust, Implementing Zero Trust

Architecture

• Internet of Things (IoT) Security: Risks and Challenges in IoT Security, Best Practices

for Securing IoT Devices

• Quantum Computing and Cyber Security: Potential Impact of Quantum Computing

on Cryptography - Quantum-Safe Cryptography, Preparing for Quantum-Resistant

Algorithms

• Cybersecurity Frameworks and Standards: Continuous Evolution of Standards,

Importance of Adaptability in Cybersecurity Practices

• Elliptic Curve Cryptography (ECC): Use cases, strengths, and weaknesses.
• Blockchain-based Cryptography: Merkle trees, hash-based cryptography, zero-

knowledge proofs.
Blockchain Fundamentals: Decentralized ledgers, consensus mechanisms (PoW, PoS)
etc.
Smart Contracts: Security vulnerabilities, formal verification of contracts.
Blockchain Use in Cybersecurity: Decentralized identity management, supply chain
security, data integrity.

System Administrator

1. Basic Linux Concepts and Linux Operating System Fundamentals Download,

Install and Configurations of Linux Operating System, System Access and File

System

2. Linux System Administration

3. Linux File Editors Vi (or Vim) and Nano: Advantages, Differences, functionality

and useability

4. User accounts and Group management: Creating and managing user/group

accounts, setting up user permissions and access control, and monitoring

activity.

5. Users and Sudo access : Managing the custom permissions for users and

Sudoers

6. Linux Directory Service - Account Authentication

7. Linux Commands : System utility, Processes and schedules, System Monitoring,

OS Maintenance, System logs monitor, Changing System Hostname, Finding

System Information, Recover root Password, Environment variables

8. Shell Scripting : Linux Kernel, what is a Shell, Types of Shells, Basic Shell scripts

9. Networking : Networking Servers and System Updates, enabling internet in

Linux VM, Network Components, Network files, NIC Information, NIC or port

bonding, Download files with URLs, curl and ping commands, File transfer

commands, System updates and repositories, System Upgrade/Patch

Management, Create Local Repository from CD/DVD, Advance Package

Management, Rollback Patches and Updates, SSH and Telnet, DNS, Hostname

and IP Lookup, NTP, Apache Web Server, Central Logger, OpenLDAP

10. Securing Linux Machine (OS Hardening)

11. Disk Management and Run Levels : System run levels, Linux Boot Process,

Message of the Day, Storage, Disk partition(Add Disk and Create Standard

Partition, Logical Volume Management (LVM), LVM Configuration during

Installation, Add Disk and Create LVM Partition, extend disk using LVM, Adding

swap space, RAID, File System Check.

12. System Backup (dd Command)

13. Network File System (NFS)

Applied AI and Data Analytics

1. Python Programming

• Core Python: Data types, control structures, functions, and file handling.

• Object-Oriented Programming (OOP): Classes, inheritance, and polymorphism.

• Libraries: Familiarity with NumPy, Pandas, Scikit-learn, TensorFlow, PyTorch,
and FastAPI.

• Data Visualization: Using Matplotlib, Seaborn, and Plotly for insights.

• Performance Optimization: Profiling and improving code efficiency.

• Sorting and Searching: Merge Sort, Quick Sort, Binary Search.

• Data Structures: Arrays, Linked Lists, Stacks, Queues, Trees, Graphs, and Hash
Tables.

• Threading: Basics of Python threading and understanding thread safety.

• Multiprocessing: Parallel execution using the multiprocessing module.

• Concurrency vs. Parallelism: Distinguishing and implementing both
approaches.

2. Machine Learning & Deep Learning

• Statistical Learning: Basics of model training, optimization, and evaluation.

• Ensemble Methods: Combining multiple models like Boosting, Bagging, and
Random Forest.

• Transfer Learning & Meta-Learning: Techniques to reuse or adapt models for
new tasks.

• Deep Learning: Understanding CNNs, RNNs, LSTMs, Transformers (like BERT,
GPT).

• NLP & Computer Vision: Working with advanced text and image processing
models.

• Generative AI: Using LLMs, Diffusion Models, and Retrieval-Augmented
Generation (RAG).

3. MLOps & Data Engineering

• Version Control: Tracking experiments and models with tools like MLflow and
DVC.

• CI/CD Pipelines: Automating testing and deployment of ML models.

• Containerization: Deploying models with Docker and Kubernetes.

• Data Engineering: Managing large-scale data using Spark and data lakes.

• Real-Time Processing: Tools like Kafka for streaming and Spark Streaming for
live data.

• Feature Engineering: Creating and managing useful data features.

Applied Computing and Enterprise software development

A. Applied Computing (e-Gov)

1. Core Java

• OOP Principles: Classes, Objects, Inheritance, Polymorphism, Encapsulation,

Abstraction

• Exception Handling: Checked vs. Unchecked Exceptions, Custom Exceptions, try-catch-

finally, Throws/Throw

• Collections Framework: Lists, Sets, Maps, Queues, Iterators, Generics

• Multithreading & Concurrency: Threads, Executors, Synchronization, Locks, volatile,

atomic

• JVM Internals: Memory Management, Garbage Collection, Class Loaders, Bytecode

• I/O Streams & NIO: File Handling, Byte & Character Streams, Buffering, Channels

• Lambda Expressions & Streams API: Functional Programming, Stream Operations,

Parallel Streams

• JDK 8+ Features: Optional, Default Methods, Stream API, CompletableFuture

2. Java EE & Spring Framework
• Servlets & JSP: Request-Response Cycle, Session Management, JSP Scripting

• JPA & Hibernate: ORM Concepts, Annotations, Criteria API, JPQL, Caching, Entity

Lifecycle

• Spring Core: Dependency Injection, Inversion of Control, Beans, ApplicationContext

• Spring MVC: Controllers, Views (JSP/Thymeleaf), Form Handling, Validation, REST API

Development

• Spring Boot: Auto-Configuration, Profiles, Embedded Servers, Starters, Properties

Configuration

• Spring Data JPA: Repositories, Query Methods, Transactions, Paging & Sorting

• Spring Security: Authentication, Authorization, JWT, OAuth2, Method Security

• Spring Cloud: Microservices, Eureka, Ribbon, Feign, Config Server, Circuit Breakers

(Hystrix)

• Web Services: RESTful Web Services, SOAP, JSON/XML Marshalling

3. Database Management & SQL
• Relational Databases: ER Modeling, Normalization (1NF, 2NF, 3NF), ACID Properties,

Transactions

• SQL Queries: SELECT, INSERT, UPDATE, DELETE, Joins, Subqueries, Aggregations, Group

By, Having

• Indexes & Optimization: Types of Indexes, Indexing Strategies, Query Optimization,

Execution Plans

• Database Design: Entity-Relationship Diagrams, Foreign Keys, Primary Keys,

Constraints

• Stored Procedures & Triggers: Writing Procedures, Functions, Event Triggers, Cursors

• NoSQL Databases: Key-Value Stores, Document Stores (e.g., MongoDB), Column

Stores (e.g., Cassandra)

• Data Integrity & Consistency: Constraints, Transactions, Referential Integrity, Isolation

Levels

4. Web Technologies
• HTML & CSS: HTML5 Elements, CSS3 Layouts, Flexbox/Grid, Responsive Design, Media

Queries

• JavaScript & ES6+: Variables (let/const), Arrow Functions, Promises, Async/Await,

Modules

• Front-End Frameworks: React.js, Angular, Vue.js, Component Lifecycle, State

Management

• AJAX & Fetch API: Asynchronous Requests, XMLHTTPRequest, Fetch API, Promises

• RESTful APIs: API Design, CRUD Operations, HTTP Methods, Headers, Status Codes

• WebSockets & Real-Time Communication: WebSocket Protocol, Long Polling, Server-

Sent Events

• CSS Preprocessors: SASS, LESS, Mixins, Variables, Functions

• Browser DevTools: Debugging, Performance Analysis, Network Monitoring,

Accessibility Testing

5. Software Architecture & Design Patterns
• Software Architecture Styles: Monolithic, Microservices, Event-Driven, Layered

Architecture

• Design Patterns: Singleton, Factory, Builder, Prototype, Strategy, Observer, Decorator,

Adapter

• SOLID Principles: Single Responsibility, Open/Closed, Liskov Substitution, Interface

Segregation, Dependency Inversion

• Microservices Communication: REST, RPC, Message Brokers (Kafka, RabbitMQ), gRPC

f. DevOps & CI/CD

• Version Control Systems: Git, Branching Strategies, Merge & Rebase, Pull Requests

• CI/CD Pipelines: Jenkins, GitLab CI, CircleCI, Automated Builds, Continuous

Deployment

• Containerization: Docker, Docker Compose, Container Registry, Image Optimization

• Orchestration: Kubernetes, Docker Swarm, Helm Charts, Service Mesh (Istio)

• Monitoring & Logging: Prometheus, Grafana, ELK Stack (Elasticsearch, Logstash,

Kibana), Fluentd

• Automated Testing in CI/CD: Unit Tests, Integration Tests, End-to-End Tests, Code

Coverage Tools

g. Software Project Management

• Project Lifecycle Models: Waterfall, Agile, Scrum, Kanban, Lean Software

Development

• Agile Frameworks: Sprint Planning, Daily Standups, Retrospectives, Backlog Grooming,

Scrum Roles

• Task Management & Tracking Tools: Jira, Trello, Asana, GitHub Issues

• Risk Management: Risk Identification, Mitigation Strategies, Risk Logs

• Stakeholder Communication: Communication Plans, Reporting, Client Interactions

h. Quality Assurance & Testing

• Unit Testing: JUnit, Mockito, TestNG, TDD (Test-Driven Development), BDD (Behavior-

Driven Development)

• Integration Testing: Testing APIs, Databases, Microservices Communication

• End-to-End Testing: Selenium, Cypress, Puppeteer, Postman for API Testing

• Performance Testing: JMeter, LoadRunner, Stress Testing, Benchmarking, Bottleneck

Analysis

• Security Testing: Penetration Testing, Vulnerability Scanning, OWASP Testing Guide

• Automated Testing: Continuous Testing, Frameworks for Test Automation (Selenium,

Appium)

• Test Coverage & Metrics: Code Coverage, Test Reports, SonarQube, Static Code

Analysis

i. Security & Compliance

• Web Security Principles: XSS (Cross-Site Scripting), SQL Injection, CSRF (Cross-Site

Request Forgery)

• Authentication & Authorization: OAuth2, JWT, SSO (Single Sign-On), Multi-Factor

Authentication

• Data Encryption: Symmetric/Asymmetric Encryption, TLS/SSL, HTTPS, Hashing

Algorithms (SHA, MD5)

• Compliance Standards: GDPR, HIPAA, PCI-DSS, ISO/IEC 27001

• Security Audits & Penetration Testing: Vulnerability Assessment, Threat Modeling,

Red Team/Blue Team Exercises

• Secure SDLC (Software Development Life Cycle): Security in Design, Secure Coding

Practices, Security Testing

j. Microservices

• Microservices Design: Decomposition Strategies, Bounded Contexts, Independent

Deployment

• Service Discovery: Eureka, Consul, Zookeeper, Dynamic Service Registration

• API Gateway: Zuul, API Gateway Patterns, Rate Limiting, Circuit Breaking

• Inter-Service Communication: REST, Message Brokers (Kafka, RabbitMQ), gRPC, Event-

Driven Architecture

• Resilience Patterns: Circuit Breaker (Hystrix, Resilience4j), Bulkheads, Retry Patterns,

Fallback

• Data Consistency & Transactions: Saga Pattern, Eventual Consistency, Two-Phase

Commit (2PC)

• Microservices Security: OAuth2, JWT, Secure Communication between Services

• Observability in Microservices: Distributed Tracing (Zipkin, Jaeger), Metrics

(Prometheus), Log Aggregation

B. Enterprise Software Development

1. Algorithms and Data Structures

• Problem Solving & Computational Thinking

• Constructs, Designs, Complexity analysis, OO design, Basic Data Structures

2. Concepts of Operating Systems (OS)

• Operating System concepts with Linux environment

• Shell Programming

• Process Management, Memory Management, Virtual Memory, Deadlock

3. Software Development Methodologies

• Software Development Life Cycles, Models, Tools

• Design and Architectural Engineering - Design approaches, Modularity, Cohesion,
Coupling, Layering, Design Models, UML

• DevOps - ecosystem, phases, methodologies, tools, basics of Cloud Native
development

• Software testing

• Versioning systems

4. Database technologies

• Database Management Systems – Concepts, Types, Data Models, Database Design

• Relational Database Management systems such as PostgreSQL, MySQL, SQL
Programming (database queries, functions, triggers, procedures), NoSQL such as
MongoDB

5. Web Programming Technologies

• Web architecture

• HTML, CSS, JavaScript, JSON, Ajax, Node.js, Express.js, React, Angular

• Responsive Web Design

6. Web-based Java Programming

• J2EE, Servlets, Session Management, JSP

• Spring & Spring Boot Frameworks including Microservices Architecture

• RESTful web services

• Web Application Security

7. Mobile app development

• Fundamentals of mobile apps – Types, Mobile app ecosystem (Android, iOS), Design &
Development process, Programming fundamentals (Variables, Control structures)

• Mobile IDEs & tools, Design elements, Architecture, Components, Testing tools

• Cross platform Mobile app development frameworks

• Mobile app security

HPC Systems and Software Development

A. HPC System Software Development

1. Operating Systems - Process Management, Scheduling, Interprocess

Communication & Synchronization, Memory Management, I/O subsystem &

File Systems, POSIX Thread Programming, POSIX Semaphores, Mutexes,

Conditional Variables, Shared Memory

2. C programming – Data-Types, Variables, Constants, Operators, Identifiers,

Preprocessors , arrays, pointers, basics of Data Structures, Algorithms and

Abstract Data Types, Complexity of Algorithms, Linked Lists, Stacks, Queues,

Searching and Sorting Algorithms, Hashing, Trees.

3. Linux programming - GNU Toolchain, Linux environment and editors,

Debugging and Optimization of C programs, file handling, signal handling,

shell commands, scripting, static linking & dynamic linking, cross-

compilation

4. Device driver programming - Linux Kernel Modules and Module

Programming, Char Device Drivers, Kernel Internals: Dynamic memory

allocations, Handling Delays, Timers, Synchronization, Locking, I/O Memory

and Ports, Interrupts, Deferred Executions, Driver Debugging Techniques

5. Embedded programming - Programming in Assembly and Embedded C,

Microcontrollers, Microprocessors and SoC, RISC vs CISC, Timers/Counters,

UART, SPI, PWM, Input & Output, I2C, CAN, LED, LCD, RTC, Bus Standards

(USB, PCI), ARM, RISC-V

6. Network programming - OSI layer, Socket Programming, IP addressing

7. Computer Architecture and Organization - Instruction Set Architecture,

Cache design and coherency, Arithmetic Logic Unit, Floating Point Unit,

Instruction Set Pipelining, Parallel Processing Architectures, Distributed

systems

B. HPC Software

1. Exposure to x86_64 instruction set, addressing modes, and performance

characteristics of x86_64 processors. Understanding the ARMv8/v9

architecture, its features, and its suitability for HPC. Knowledge of the RISC-V

instruction set architecture, its modular design, and its potential for HPC.

2. BIOS/UEFI Firmware - Coreboot, EDKII
Understanding of BIOS/UEFI Concepts, UEFI Specifications, Device Tree,
Trusted Platform Module, Building and Porting Coreboot, UEFI Driver
Development and its stages.

3. Operating System and Concepts - Linux
Understanding Linux kernel architecture, file systems, processes, and
memory management. Shell scripts for automating tasks for HPC. Configuring
and managing Linux systems for HPC environments.

4. Programming Languages - C, C++, Fortran, Python
Proficiency in C, C++, Fortran and Python programming, data structures,
algorithms.

5. Compilers and Toolchain - GCC, LLVM, GNU Toolchain
Using GCC for compiling C, C++, and Fortran programs, and compiler
optimizations. Understanding the LLVM compiler infrastructure, its modular
design, and its use in development and optimization of compilers. Compiler
for GPGPU (NVIDIA/AMD etc.) and AI accelerators (TVM/XLA/Glow etc.).
Using the GNU toolchain for profiling, linking, binary analysis and debugging.

6. Parallel Programming Models - MPI, OpenMP, Hybrid Programming (MPI +
OpenMP), CUDA, OpenACC, OpenCL, SyCL
MPI concepts, MPI Data types, point-to-point communication, collective
operations, and various MPI implementations. OpenMP directives, shared
memory parallelism, and its use in multi-core systems and devices.
Combining MPI and OpenMP for parallelizing applications with both shared
and distributed memory approach.
CUDA programming, GPU architecture, kernel functions, memory usage and
optimization. OpenACC directives for offloading computations to GPUs and
managing data transfers. OpenCL for cross-platform device programming
and heterogeneous computing and its use in HPC. SyCL as a C++-based
abstraction for heterogeneous computing.

7. Performance Analysis and Debugging - GNU Profiler, GNU Debugger, TAU,
HPC Toolkit
GNU Profiler to measure program execution time, identify performance
bottlenecks, and optimize code. Debugging serial and parallel programs using
GNU Debugger, setting breakpoints, inspecting variables, and
analyzing memory usage. TAU for performance analysis, profiling, and
visualization of HPC applications. Analyzing application performance using
HPC Toolkit

8. Libraries and Benchmarks - Linear algebra (BLAS, LAPACK), NAS Parallel
Benchmarks, Floating Point Number System
Using BLAS and LAPACK for efficient linear algebra operations in HPC
applications. Evaluating the performance of HPC systems using the NAS
Parallel Benchmarks suite. IEEE 754, POSIT

9. HPC Resource Management, Scheduler and Runtime
SLURM's architecture, job submission and scheduling, resource allocation,
and user management. HPC Scheduling Concepts and Algorithm for efficient

scheduling across heterogenous computing resources. Runtime for enabling
program execution on different hardware devices.

• Computer and HPC Architecture

• Operating system (Linux)

• C/ Modern C++ and python,

• data structure and algorithms

• Compiler design

• Parallel Programming models- OpenMP,CUDA and SYCL

• Message passing techniques

• Programming libraries - math, domain and AI based

Quantum Computing

1. Quantum Mechanics Fundamentals

2. Mathematical Foundation – Linear Algebra

3. Quantum Information Science

4. Basics of Quantum Computing

5. Quantum Algorithms

6. Quantum Hardware and Architectures

7. Control Electronics and Measurement Hardware

8. Quantum Optics

9. Quantum Programming and Simulation Tools – (Qiskit, Cirq)

10. Quantum Error Correction

11. Post-Quantum Cryptography

